
14
中国材料进展
Response in Ferroeleetric Relaxors as a Critical Phenomenon
[J].Nature,2006,441:956.
[37] Zhou Y, Xue D, Ding X, et al. High Temperature Strain Glass
in Tis Pdso -, C, Alloy and the Assoeiated Shape Memory Effect and Superelasticity [ J]. Applied Physies Letters, 2009, 95 : 151 906.
5 38 1 Westphal V. Kleemann W, Glinchuk M D, Diffuse Phase Transi-
tions and Random-Field-Induced Domain States of the Relaxor Ferroelectrie PbMg)i/s] Nbi2/s; Og3: [J]. Physical Resiesw Letters, 1992,68; 847.
[39] Colla E V, Koroleva E Y, Okuneva N M, et al. Long-Time
Relaxation of the Dielectric Response in Lead Magnoniobate[ J], Physical Retiew Letters, 1995, 74 : 1 681.
[ 40] Vasseur R, Lookman T. Effects of Disorder in Ferroelastics: A Spin
Model for Strain Glass[J]. Physical Resriew B, 2010, 81 ; 094 107.[41 ] Jaffe B. Piezoelectric Ceramics [ M ]. London and New York :
Academic Press,1971
[42] Uehino K. Ferroelectric derices[M]. New York : Maroel Dekker,
2000.
第31卷
[43] Jaffe B, Roth R 5, Marzullo S. Piezoelectrie Properties of Lead
Zirconate lead Titanate Solid Solution Ceramics[ J]. J Appl Phys , 1954,25;809.
[44] Rao W F, Wang Y U. Bridging Domain Mechanism for Phase
Coexistence in Morphotropie Phase Boundary Ferroelectrics [ J], Applied Physics Letters, 2007, 90: 182 906.
[457 Haun M J, Furman E, Jang S J, et al. Cross, Themodynamie
Theory of the Lead Zirconate-Titanate Solid Solution System, Part V: Theoretical Calculations[J]. Ferroelectrics, 1989, 99: 63.
[46] Rossetti G A, Khachaturyan A G, Akeay G, et al. Feroelectrie
Solid Solutions with Morphotropic Boundaries: Vanishing Polari-zation Anisotropy, Adaptive, Polar Glass, and Two-Phase States[J]. Appl Phys Lett, 2008, 103 ; 114 113.
[49] Jin Y M, Wang Y U, Khachaturyan A G, et al. Conformal Mini-
aturization of Domains with Low Domain-Wall Energy : Monoclinic Feroelectrie States near the Morphotropic Phase Boundaries[ J]. Physical Reriew Letters, 2003, 91 : 197 601.
高性能致密金属零件的激光立体成形技术
针对高性能复杂金属结构件成形的技术难题和快速响应需求,建立了金属结构件激光立体成形科学与技术整体架构和成形工艺规范,成形与修复构件的综合力学性能达到锻件技术标准,研发了具有自主知识产权系列激光立体成形与修复工艺装备,并在国内首先实现了商业应用,为激光立体成形技术的大规模工业化应用提供了技术支撑。该技术获授权发明专利5项。
性能指标
(1)最大可成形零件外廊尺寸:1200mm×1000mm×1000mm;(2)激光立体成形零件的性能达到同种金属材料的锻造或铸造水平;(3)激光成形修复零件的性能达到零件本体的90%以上;(4)系列商用化固定式/移动式激光立体成形和修复再制造装备。
特点
(1)响应速度快、效率高、成本低、易于实现原位精密制造和再生制造等:(2)成形件具有高的力学性能(综合力学性能与锻件相当),既使是再制造零件也可以达到新件的性能。
适用范围
适用于航空、航天、医学、模具、
钢铁、轨道交通和机械等领域。
合作方式
技术开发联系电话
技术咨询
技术服务
029 86226599
技术转让
联系人
赵先生
******+***+*±**** 8498684868448