
第32卷
第12期
文章编号:10069348(2015)12018705
计算机仿
真
2015年12月
高速大惯性液压伺服系统高精度控制研究
周开,李维嘉
(华中科技大学船舶与海洋工程学院,潮北武汉430074)
摘要:高速大惯性减压伺服系统由于本身存在的低频及大延遇等特性难以实现高精度控制。以一种高速大惯性液压伺服系统为研究对象,针对系统所要求的高速高精度控制,通过对电液比例阀控缸系统的详细分析,并根据其数学模型提出了采用速度及加速度前馈的分区变参数PID控制的方法,最后采用AMESim及Matlab/Simulink搭建联合伤真模型进行仿真。仿真结果表明,前面提出的控制方法不仅具有较好的综合性能,并且显著提高了系统的定位精度和响应速度。改进控制方法较
好实现大惯性系统的高速高精度控制,为实际系统的设计提供了参考。关键调:大馈性;高精度;比例阀;分区变参数控制;位置控制
中图分类号:TP391.9
文献标识码:B
Research on High -Precision Control for Hydraulic ServoSystemwithHighSpeedandLargeInertia
ZHOUKai,LI Wei-jia
(School of Naval Architecture & Ocean Engineering, Huazhong University of Science
and Technology, Wuhan Hubei 430074, China)
ABSTRACT ; Since the characteristics of low frequency and large delay in the hydraulic system with big inertia inher-ent and high speed, it is difficult to achieve the high precision control. In this research, a kind of hydraulic servo system with high speed and large inertia was taken as the research object, and the electro hydraulic proportional valve contrlled eylinder system was analyzed in detail to get the mathematical model of hydraulic system. According to the mathematical model, the partition variable parameter PID control method was proposed based on the velocity and acceleration feed forward. Then AMESim and Matlab/Simulink were used to build the joint simulation model for the hydraulic servo system for the simulation analysis. The simulation results show that the control method put for-ward in this research not only has good comprehensive performance, but also significantly improves the positional ac-curacy and response speed for the system. The control with high speed and high precision for the large inertia system can be achieved by the control method. And the reference is also provided for the design of the practical system. KEYWORDS : Large inertia; High precision; Proportional valves; Partition variable parameter control; Position con-trol
大惯性液压伺服系统与一般液压伺服系统存在很大的
引言 1
随着液压伺服控制技术的飞速发展,各种新的控制算法及新型控制元件的引入,使得一般的位置伺服控制系统都有较高的精度和较好的稳定性。但对于大惯性液压伺服系统,传统的PID参数整定方法并不能很好的适应大惯性系统存在的振动、超调及非线性等特点。
基金项目:国家科技支撑计划(2012BAF02B01)
收稿日期;20150128 万方数据
修回日期:20150220
差异,最主要的区别是由于大惯性作用,当控制对象接近目标时,使得闭环控制造成频紧的振荡和超调。对于频紫振荡虽然可以通过减小系统增益来抑制,但是系统的快速性也会降低,同时也无法消除振荡。文献[1]中通过在液压缸两腔增加压力反馈,采用压力补偿来增加系统阻尼以抑制大惯性引起的振动。该方法增加了系统的复杂程度,但对系统的快速性及稳定性并没有显著地提升。文献[2]中针对比例阀控缸位置伺服系统,基于误差及误差变化率,设计模PID控制器获得较快响应速度与较小超调。这种方法量然稳定性
—187 -