您当前的位置:首页>论文资料>基于粗糙集理论BP网络的地铁深基坑监控预测分析与优化

基于粗糙集理论BP网络的地铁深基坑监控预测分析与优化

资料类别:论文资料

文档格式:PDF电子版

文件大小:1004.29 KB

资料语言:中文

更新时间:2024-12-02 09:47:39



推荐标签:

内容简介

基于粗糙集理论BP网络的地铁深基坑监控预测分析与优化 50
DOI:10. 7672/sgjs2016130050
施工技术
CONSTRUCTION TECHNOLOGY
2016年7月上第45卷第13期
基于粗糙集理论BP网络的地铁深基坑监控预测
分析与优化*
马晨阳1,2,吴立1,2周玉纯1,2,袁青1,2.汪煜烽2
(1.中国地质大学(武汉)岩土钻掘与防护教育部工程研究中心,湖北武汉430074:
2.中国地质大学(武汉)工程学院,湖北武汉430074)
[摘要】以25个深基坑工程地表沉降实测资料为训练样本,综合考虑多个主要影响因素,应用粗糙集对次要影响因素进行约简,然后建立地表沉降的7-15-1粗糙集BP(RS-BP)神经网络预测模型对5个检验样本进行预测及预测精度分析,并将该模型与传统BP神经网络预测模型进行对比。结果表明:传统BP神经网络预测其平均相对误差达到15.04%;而RS-BP神经网络预测平均相对误差较小,为5.55%,满足精度要求。因此,基于粗糙集BP神经网
络预测模型在预测精度上优于传统BP神经网络预测模型。【关键词】深基坑;监测;预测;沉降;粗糙集;BP神经网络
[中图分类号]TU433
【文献标识码]A
[文章编号】1002-8498(2016)13-0050-05
AnalysisandOptimizationoftheApplicationofRS-BPNeuralNetwork in Prediction of Deep Subway Foundation Excavation Monitoring
Ma Chenyang,2,Wu Li,2,Zhou Yuchun',2,Yuan Qing',2,Wang Yufeng
(1. Engineering Research Center of Rock-soil Drilling & Ercavation and Protection, Ministry of Education, Chind University of Geosciences (Wuhan), Wuhan, Hubei 430074, China; 2. Faculty of Engineering, China University of
Geosciences (Wuhan), Wuhan, Hubei 430074, China)
Abstract : Based on twenty five samples of actual measurements of ground surface settlement around deep foundation excavation, these factors of surface settlement are comprehensively considered. Firstly, the rough set theory is adopted to reduce secondary attributes for the secondary factors and then obtain the optimal attribute set. Secondly, this paper established the 7-15-1 RS-BP neural network prediction models for surface settlement to predict five validating sample and analyze the precision. Finally, the prediction values of RS-BP model are compared with traditional BP model. The results show that the average relative error of surface settlement prediction with traditional BP model is 15. O4% , while RS-BP model is 5. 55% and meets the precision requirement. Therefore, using RS-BP model to predict surface settlement is superior to traditional BP model in prediction accuracy-
Key words : deep foundation excavation; monitoring: prediction ; settlement; rough set ; BP neural network
0
引言
近年来,地铁深基坑工程规模不断扩大,施工
环境愈加复杂,需要对地表沉降变形过程及趋势进行全面掌控,要主动接收和处理数据,实现信息化施工。然而地表沉降变形与众多影响因素有关,且存在复杂的非线性关系,经验公式法由于考虑因素
*湖北省自然科学基金计划重点项目(2013CFA110)
[作者简介】马晨阳,硕士研究生,E-mail;524035683@qq.con[通讯作者]吴立,教授,博士生导师,E-mail:lwu@cug.edu.cn[收稿日期】2015-06-03
少且假设条件与实际差异大难以对其进行准确预测;有限元方法在实际工程应用中因土体参数不能准确确定也难以适用:胡东等、廖展宇等[2、何伟等[3]采用灰色模型GM(1,1)分别对基坑变形、隧道变形进行了预测,然而灰色模型对波动较大的数据以及具有复杂非线性变化的数据预测效果不佳;吴江准4采用时间序列模型对建筑物变形进行了预测,但时间序列模型只适用于历史线性表示的随机数列,难以针对地表沉降多影响因素的数据结构[5],因此需要建立一种能满足预测精度要求、囊
上一章:地铁车站超深基坑工程大口径管井降水的设计与施工 下一章:杭州地铁1号线盾构隧道施工的风险与对策

相关文章

基于粗糙集-遗传算法改进的BP神经网络算法研究 基于BP人工神经网络的油箱端盖拉深成形仿真预测 BP神经网络预测模型在基坑监测中的应用分析 基于粗糙集核优化的支持向量机在多组分污染气体定量分析中的研究与应用 基于遗传算法与BP神经网络的股票预测 基于模糊粗糙集的地铁施工安全风险评价规则提取研究 汽车声品质的GA-BP神经网络预测与权重分析 基于BP神经网络的连杆衬套磨损量预测