您当前的位置:首页>论文资料>基于粗糙集—随机森林算法的复杂岩性识别

基于粗糙集—随机森林算法的复杂岩性识别

资料类别:论文资料

文档格式:PDF电子版

文件大小:1.8 MB

资料语言:中文

更新时间:2025-01-15 16:40:47



推荐标签:

内容简介

基于粗糙集—随机森林算法的复杂岩性识别 2017年12月第36卷第6期
大庆石油地质与开发
Petroleum Geology and Oilfield Development in Daqing
DOI:10.19597/J.ISSN.1000-3754.201703072
Dee.,2017 Vel. 36 No. 6
基于粗糙集一随机森林算法的复杂岩性识别
张占松1,2张超谟"2聂昕1,2朱林奇1,2
周雪晴1,2张
(1.长江大学油气资源与勘探技术教育部重点实验室,湖北武汉430100: 2.长江大学非常规油气湖北省协同创新中心,湖北武汉430100)
张宏悦1,2
摘要:针对复杂岩性碳酸盐岩储层原有岩性识别方法精度较低、泛化能力不足、结果不稳定等问题,提出基于粗楚集-随机森林算法的复杂岩性识别方法。利用邻域粗糙集的属性约简选取岩性敏感曲线,在不影响岩性识别基础上将不必要曲线翻除,能有效去除元余信息;其次将筛选出的曲线作为随机森林模型输人,建立粗髓集-随机森林算法的性识别模型。通过对某区块502块岩心数据处理,该模型岩性判别率稳定到88.3%,比Fisher判别、Bayes判别等方法精度高,且实现简单,有较强泛化能力。该方法可作为复杂岩性储层岩性识别方法,为复杂岩性储层的勘探开发提供帮助。
关键调:复杂岩性储层;碳酸盐岩;岩性识别:邻域粗糙集;随机森林
中图分类号:P631.8
文献标识码:A
文章编号:1000-3754(2017)06-0127-07
COMPLEXLITHOLOGICIDENTIFICATIONBASEDON
ROUGHSET-RANDOMFORESTALGORISM
ZHOU Xueqing'-2, ZHANG Zhansong'-2, ZHANG Chaomo-2, NIE Xin'-2, ZHU Linqi'-2, ZHANG Hongyue'-2
(1, MOE Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University, Wuhan 430100, China; 2. Hubei Cooperatine Innotation Center of Unconventional Oil and Gas,
Yangtze University, Wuhan 430100, China)
Abstract: In view of the problems of the low precision of the original identifying methods, insufficient generalized ability, unstable results and so on for the complex-lithology carbonate reservoir, the identifying method for the com-plex lithology was proposed based on rough set-random forest algorism. With the help of the atributes of the neigh-borhood rough set, the lithology sensitive curves were reduced and chosen, on the basis of the non-effects on the li-thology identification, the unnecessary curves were cut out to effectively delete the redundant information; and then the chosen curves were input into the random forest model and the lithology identifying model for the rough set- ran-dom forest algorism was established. Through the core data processing of 502 samples in a block , the identified ratio of the lithology for the model has been stabilized to 88. 3% i. e. is significantly higher than other discriminating methods (Fisher and Bayes) and furthermore the task is easy to realized and the model possesses much stronger ca
改回日期:2017-10-30
收稿日期:2017-03-25
基金项目:国家自然科学基金项目“页岩油储层岩石物理特性数值模拟研究”(41504094)、"致密气储层岩石导电机理
()究与应用”(2017ZX05032003-005)。
作者篇介:周雪靖,女,1993年生,在读硕士,从事地球物理测并解释与评价研究。
E-mail: 201571239@ yangtzeu, edu. cn
万方数据
上一章:基于网络模型的油藏优势通道形成微观机制 下一章:海相烃源岩镜状体反射率测定方法在塔东地区的应用

相关文章

基于粗糙集-遗传算法改进的BP神经网络算法研究 基于粗糙集理论的雷达辐射源信号识别 基于粗糙集和自适应遗传算法的电力变压器故障诊断 随机森林算法应用于锅炉燃料量预测的参数设定 基于随机森林的激变变星候选体的数据挖掘 基于模糊粗糙集的地铁施工安全风险评价规则提取研究 基于粗糙集的数控机床精度设计质量特性反向映射研究 基于粗糙集理论BP网络的地铁深基坑监控预测分析与优化