
“压缩热”干燥机能耗分析李申
(杭州蓝天净化机械有限公司,浙江杭州310012)
节分析 Ergergo-saringe Analysis
[摘要]:作为典型的熟质交换设备,吸附燥器再生能量是被吸水量锁定的。总耗能受到吸附剂本身物理性质的制约,可用“质量守恒”与“能量守恒”两大定律来解释其能耗过程。各类吸附干煤器能耗量都要通过“能量衡算”来确定。“压缩热”于燥器与其他一切加热干燥器一样采取了“长周期”工作循环制,解吸环节无效热损很大。无热再生干燥器则采
用了“短周期”工作制,为实际耗气量减少留有了校大的空间。[关键词]:吸附干燥器;能耗;能量衡算;压缩热
中图分类号:TH45文献标志码:B 文章编号:1006-2971(2015)S1-0037-06
AnalysisofEnergyConsumptionofCompressionHeatPressureHeatDryer LI Shen
(Hangzhou Lantian Purification Machinery Co., Ltd.,Hangzhou 310012, China)
Abstract:As the typical heat and mass transfer equipment, the energy of regenerative desiccant dryers is limited by water absorption. The total energy consumption is restricted by the physical properties of the adsorbent, which can be explained through two laws of conservation of mass and energy conservation. The energy consumption in each absorption dryers should be determined by “energy balance". “Compression heat" dryer adopts “long-period" working cycle system as other heating dryers, in which invalid heat losses are great in desorption process. However, regenerated dryer without heat adopts “shortperiod” working cycle system, which provides greater space for actual gas consumption reduction.
Key words: absorption dryer; energy consumption; energy balance; compression heat
1引信
吸附干煤器工作原理是建立在“物理吸附” 基础上的。可概括描述为“低温/高压时吸附,高温/低压时解吸”。吸附时不需外界能量介人面自动进行,解吸再生时却要耗费相当多的能量一一既可取自干燥器本身也可从外设热源中取得。由此吸附干燥器可分为“无热再生”和“有热再生” 两大类型。
吸附于燥器的再生能量被吸水量锁定,即再生能量有个“阀”值,稍许超过“阔”值并不意味能量一定浪费了(因为过程中多少存些工艺需要的附加损失),但再生能耗低于“阅”值则会带来“再生不足”,其造成的后果本文不予展开。
收稿日期:2015-08-10 ■2015年增刊
工程吸附中再生能量大小是可计算的,对压缩空气干燥器来讲每解吸1kg水分,理论上需要 2500k左右的能量(40℃时)一在物理上相等于水的相变热,根据状态变化可分别表现为同值的“气化热”或“凝聚热”[
加热再生干燥器基于“变温吸附”,完美的再生过程必须经过“加热-冷却”2个耗能阶段,此外还不可避免需要长时间的延续,由此而决定了“吸附”时间跟延长。吸附时闻间长短与吸附水量成正比例关系,而且“附加热损,至少包括:筒体及附件加热、筒壁与周围环境的对流换热、辐射换热等也都增多,这些无效损耗都得由外设热源提供。与此不同,不需外热介入的无热再生干燥器解吸所需的“相变热”完全来自本身储备的
压缩机技水37 Compressoc