
第41卷第12期 Vol. 41No. 12
特种成形
饭压技
FORGING & STAMPING TECHNOLOGY
推进剂贮箱零件侧翻孔电磁成形数值模拟苏红亮,黄亮,李建军,马飞2,林磊2
(1.华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室,湖北武汉430074;
2.中国航天科技集团公司长征机械厂,四川成都610100)
2016年12月 Dec.2016
摘要:基于ANSYS多物理场耦合模块,采用松散耦合法,建立了推进剂贮箱零件侧翻孔电磁成形的有限元模型,揭示了还料电磁力、应力、应变和厚度等的分布规律及其随时间变化规律,并优化了效电电压和成形线圈内径等工艺参数。分析结果表明:坏料在圆角区域应力和应变较大,且厚度减薄量较大;坏料圆角处残余应力较大。放电电压增大,还料变形量增加,但厚度减薄量相应增加;线圈内径增大,坏料与模具最大间度、最大卖角以及坏料最小厚度均先减小后增大。得到的故电电压和成形线圈内径优化值分别为40kV和40mm。
关键词:推进剂贮箱;电磁成形;侧翻孔;松散耦合;ANSYS DOI: 10. 13330/j. issn. 1000-3940. 2016. 12. 009
中图分类号:TG391
文献标识码:A
文章编号:1000-3940(2016)12-0053-09
Numerical simulation on the side hole flanging electromagnetic
forming for propellant tank parts
Su Hongliang', Huang Liang', Li Jianjun', Ma Fei', Lin Lei?
(1. State Key Labornatory of Materials Processing and Die & Mould Technology , School of Materials Seience and Engineering Huazhong University of Science and Technology, Wuhan 430074, China; 2. Changzheng Machinery Factory, China Aerospac
Science and Technology Corporation, Chengdu 610100, China)
Abstract : A finite element model of the side hole flanging for propellant tank parts in the electromagnetic foming process was established based on the multi-physics coupling module and the loose coupling method, and the distribution of the electromagnetic force, stress, strain and thickness of the blank and their variations with time were revealed. Furthermore, the process parameters of the discharge voltage and the coil inner diameter were optimized. The analysis results show that the stress and strain of blank are bigger at the round corner area with a larger thickness reduction and a larger residual stress at the round comer area. With the increase of the discharge voltage, the deforma-tion of blank increases, while the thickness reduction increases correspondingly. As the coil inner diameter increases, the maximum clear ance and the maximum angle between die and blank , and the minimum thickness of the blank decrease firstly and then increase. Finally,
the optimum values of the discharge voltage and the eoil inner diameter are 40 kV and 40 mm respectively. Key words : propellant tank; electromagnetic forming; side hole flanging; loose coupling method; ANSYS
随着航空航天事业的发展,对空天运载工具的服役性能提出更高的要求,从而给制造工艺带来许多新的挑战。在航天运载火箭的推进剂贮箱等部件中,为使于管路与箱体之间进行焊接,保证焊接接
收稿日期:20160516;修订日期:20160820
基金项目:国家重点基础研究发展计划资助项目(2011CB012802);国家自然科学基金资助项目(51575206);中国航天科技集团公司航天科技创新基金资助项目(CASC150704)
作者筒介:苏红亮(1992-),男,博土研究生 E-mail: sue@ hust. edu. cn
通摄作者:黄亮(1981-),男,博士,副教授万方hanglimglutal
头质量,需要在箱体上制造翻边孔]。箱体零件庞
型面复杂,翻孔轴向与箱体表面法向一般成大、
定的角度,且坏料厚度较大。采用传统的翻孔工艺所需工装复杂,易于产生起皱和裂纹等缺陷[2],产品合格率较低。电磁成形能够提高铝合金等的成形性能[3],改善传统翻孔工艺中裂纹和起皱问题,为上述翻孔工艺提供了新的途径。电磁翻孔成形利用坏料因电磁感应受到的排斥力使坏料产生背离成形线圈的塑性变形,从而将工件成形成特定形状4。电磁成形以磁场为介质作用电磁力,避免了相应的机械接触,因此不产生摩擦,也无需润滑剂(3);属单模成形,能够简化模具制造[6]。目前,国内外学者将电磁成形应
特种成形栏目是由北京机电研究所塑性工程技术中心①赞助刊出