您当前的位置:首页>论文资料>低气压环境被服系统总热阻计算模型

低气压环境被服系统总热阻计算模型

资料类别:论文资料

文档格式:PDF电子版

文件大小:1.61 MB

资料语言:中文

更新时间:2024-12-06 18:09:49



推荐标签:

内容简介

低气压环境被服系统总热阻计算模型 第39秦第4期 2017年8月
土水建筑与环境工程
Journal of Civil,Architectural &.Environmental Engineering
doi;10.11835/j. issn., 1674-4764. 2017.04. 002
低气压环境被服系统总热阻计算模型
张华玲,姚大军,洪诗尧
(重庆大学城市建设与环境工程学院,重庆400045)
Vol. 39 No. 4 Aug. 2017
摘要:服装热阻是影响人体热舒适的重要因素之一,夜间睡眠状态下的被服系统总热阻包括人体参考的被服系统总热阻的理论计算模型。以人体睡眠状态被服系统总热阻计算方法为依据,引入气压修正项对相关参数进行修正,建立了造用于低气压环境的被服系统总热阻的修正计算模型,并用模型计算了冬夏典型被服系统总热阻,分析了气压减小对总热阻的影响,发现冬夏季被服系统总热阻均随大气压力降低而升高,增加百分比最大值均为42%,且均出现在被子覆盖率为23.3%的
条件下,当海拔低于3000m时,由被子覆益率引起的被服系统总热阻增加系数不超过0.05。关键词:低气压环境;病人被服系统总热阻;压力修正;计算模型
中图分类号:TU831.8
文献标志码:A文章编号:1674-4764(2017)04-0006-05
Calculationmodel of total thermal resistance of beddingand
clothingsysteminlowpressureenvironments
Zhang Hualing,Yao Dajun,Hong Shiyao
(Faculty of Urban Construction and Environmental Engineering, Chongqing University,Chongqing 400045,P. R. China. ) Abstract:Clothing thermal resistance is a key factor that affects the thermal comfort of human body. The total thermal resistance of bedding and clothing system in sleeping at night includes the clothing system resistance and the body of the mattress system. In the low pressure environment, there is still a lack of experimental data and calculation model of thermal resistance, with no reference to theory models. In this paper, based on calculation method of the total thermal resistance of bedding and clothing system in sleeping, the calculation model of total thermal resistance in low pressure environment is established by the introduction of pressure correction of related parameters. The typical total thermal resistance both summer and winter is calculated using the model. The variation rules of total thermal resistance caused by the pressure reducing is obtained. At altitude of less than 3000m the increasing coefficient of total thermal resistance of bedding and clothing system caused by the coverage ratio of blanket is not more than 0. o5. The total thermal resistances both winter and summer increase with atmospheric pressure decreasing. There is a same maximum percentage of 42% under the condition of 23. 3% of blanket coverage.
收稿日期:2016-10-19
基金项目:国家自然科学基金(51278506)
作者简介:张华玲(1967-),女,教授,主要从事建筑节能与人体热舒适研究,(E-mail)hlzhang@cqu.edu.cn Received:2016-10-19
Foundation item: Natural Science Foundation(No. 51278506)
Author brief: Zhang Hualing (1967-), professor, main research interests: building energy saving and human thermal
comfort, ( E-mail)hlzhang@ cqu. edu. cn.
万方数据
上一章:掺硼金刚石薄膜电极电化学氧化对铜绿微囊藻的生长抑制 下一章:基于利益相关者动态博弈的绿色建筑推进机制

相关文章

QJ 20486.1-2016 地地弹道导弹控制系统环境试验方法第1部分∶ 低气压试验 接触热阻的计算及ICEPAK环境下的数值模拟 GB/T 2423.27-2020 环境试验第2部分∶试验方法试验方法和导则∶温度/低气压或温度/湿度/低气压综合试验 GB/T 2423.27-2020 环境试验 第2部分:试验方法 试验方法和导则:温度/低气压或温度/湿度/低气压综合试验 GB/T 12085.5-2010 光学和光学仪器 环境试验方法 第5部分:低温、低气压综合试验 GB/T 5170.10-2017 环境试验设备检验方法 第10部分:高低温低气压试验设备 GB/T 2423.63-2019 环境试验第2部分:试验方法试验:温度(低温、高温)/低气压/振动(混合模式)综合 JB/T 10181.21-2014 电缆载流量计算 第21部分:热阻 热阻的计算