内容简介
书名:简明复分析
作者:龚升
出版日期:1996年
本书较系统地讲述了复变函数论的基本理论和方法。全书共分6章,内容包括:微积分,Cauchy积分定理与Cauchy积分公式,Weierstrass级数理论,Riemann映射定理,微分几何与Picard定理,多复变数函数浅引等。每章配有适量习题,供读者选用。本书试图用近代数学的观点和方法处理复变函数内容,并强调数学的统一性。例如,用微分几何的初步知识,对Picard大、小定理给出简洁的证明;强调变换群的概念,利用Pompeiu公式给出一维a-问题的解,并用此来证明Mittag-Leffler定理与插值定理等,利用简单区域上的全纯自同构群证明Poincare定理;对多复变数函数做了简明的介绍。
本书内容精练,深入浅出,逻辑严谨,注意复分析内容与近代数学的衔接,使传统内容以新的面貌出现。
本书可作为大学数学系、应用数学系本科生复变函数基础课教材,以及相关专业系科研究生、教师的教学参考书,也可供从事复分析、实分析研究及相关专业的科技工作者阅读。