
摘要∶为降低热误差对加工精度的影响,以减少补偿成本、简化数据采集、提高补偿精度为目标,提出采用灰色GM(0,N)模型进行数控机床热误差建模预测;以优化数据配置、改善补偿系统动态品质、提高鲁棒性为目的,建立了GM(O,N)优化模型。采用智能温度传感器和位移传感器采集了MCH63精密卧式加工中心温度数据和主轴3个方向热位移量,并根据采集数据构建热误差模型。试验结果表明∶CM(0,N)建模方法简单,数据量少,运算时间短,预测精度较高;优化模型可根据在线输入的新数据不断修正模型本身,其精度高、鲁棒性强、通用性好,适合于在线建模。