
第20卷第12期 2012年12月
文章编号1004-924X(2012)12-2619-07
光学精密工程
Optics and Precision Engineering
Vol.20No,12
Dec.2012
双向大视场消畸变低温红外目标模拟光学系统设计
赵文才“,马军
(中国科学院长春光学精密机械与物理研究所,吉林长春130033)
摘要:为了选择合适的低温红外目标模拟光学系统,针对国内现有离轴三反射光学系统多存有弧失视场较大,子午视场很小的向题,本文基于光学系统对称性法则,设计了子午和弧矢都为5°,波长为3~5μm的矩形双向大视场离轴三反系统,其焦距为400mm,F#为8。利用光学系统结构参数和反射镜的非球面系数,调整三镜的偏心及倾斜来消除畸变及其它像差,系统光学传递函数在6.5lp/mm时优于0.71,全视场均方根波像差达到入/250,均方根最大弥散班半径不超过7.0um,达到衍射极限。另外,系统在各个谱段全视场范围内的最大畸变量小于0.04%,设计的系统可用于红外及可见波段,成像质量均良好。
关键调:红外目标模报,光学设计;离轴三反射系统;大视场;消時变
中图分类号:TH703;TN216
文献标识码:A
doi;10, 3788/OPE. 20122012. 2619
Designof cryogenicinfraredtargetsimulationsystem withbidirectionalandwidefieldforeliminatingdistortion
ZHAOWen-cai',MAJun
(ChangchunInstituteof Optics,FineMechanics andPhysics, ChineseAcademy of Sciences,Changchun130033,China) Correspondingauthor,E-mail:wencaizhao@yahoo.com.cn
Abstract: To overcome the shortcomings of off-axis Three Mirror Anastigmatic (TMA) optical systems in larger sagittally FOVs and smaller meridionally FOVs, this paper designs a bidirectional TMA optical system for cryogenic infrared target simulation system based on the symmetric rule of optical system, Both the sagit-tally and meridionally FOVs are 5°,the larger FOV optical system at 3-5 μm has a focal length of 400 mm and a F number of 8. By using the structural parameters of the optical system and the non-spherical coeffi-cients of the mirrors to adjust and correct the eccentric and tilt of the three-mirror and to eliminate distortion and other aberrations, the system shows that the MTF is better than 0. 71 at 6. 5 lp/mm, the aberration of the whole FOV is >/250(RMS) and the maximum radius of diffuse point is less than 7. 0 μm(RMS), which achieves diffraction limit. Moreover, the maximum distortion in the whole FOV is less than 0. 04%. Finally, it proves that the optical system has good imaging quality both in the visible and infrared spectral regions, Key words: infrared target simulation; optical design; off-axis Three Mirror Anastigmatic(TMA) sys-
tem;widefield;eliminating distortion
收稿日期:2012-07-21;修订日期:2012-08-23,
基金项目:国家863高技术研究发展计划资助项目(No.863-2-5-1-13B);吉林省科技发展计划资助项目(No
20100524);科技部国际合作项目(No.2011DFA50590)