
第1期
2); 97 100.
陈志远等:钛氧化物熔盐电脱氧工艺用氟化物熔盐的选择
49
Diffnction of the Electrochemical Reduction Pathway of TiO,
[18] Wang S, Wang W, Li S, et al. Cathodie Behavior of Molten
CaCl,-CaO and CaCl,-NaCl-CaO [ J]. Iniernationol Joumal of Minerals, Metallurgy and Matericals, 2010, 17(6) : 791 794
[19] Hesselmann K, Kubaschewski O, Knacke O. Thermochemieal
Properties of Inorganic Substances[ M]. Berlin; Springer, 1991.[20] Zou X L, Lu X G, Li C H, et al. A Direet Electrochemical
Route from Oxides to Ti-Si Intermetallies [J].
Electrochimica
Acta, 2010, 55(18) : 5 173 5 179.
[21] Schwandt C, Fray D. Detemination of the Kinetic Pathway in the
Electrochemical Reduction of Titanium Dioxide in Molten Caicium Chloride[J]. Electrochim Acta, 2005 , 51(1) : 66 76.
[22] Alexander D, Schwandt C, Fray D. Mierostructural Kinetics of
Phase Transformations during Electrochemical Reduction of Tita-nium Dioxide in Molten Calecium Chloride[ J]. Acto Materialia, 2006, 54(11) ; 2 933 2 944.
[ 23 ] Suzuki R. Calciothemic Reduction of TiO and in Situ Electrolysis
of CaO in the Molten CaCl, [J]. Journal of Physics and Chemis-try of Solids, 2005, 66(2 4) ; 461 465.
[24] Bhagat R, Dye D, Raghunathan S L, et al. In Situ Synchrotron
[J]. Acta Mater, 2010, 58(15) : 5 057 5 062.
[25] Zhang G H, Wang L J, Chou K C. A Comparison of Different
Geometrical Models in Calculating Physicochemical Properties of Ouatemary Systems[J]. Calphad, 2010, 34(4) ; 504 509
[ 26] Chou K C. A General Solution Model for Predieting Temary Ther-
modynamie Properties[ J]. Calphad, 1995, 19(3) : 315 325.
[27] Chou K C. A New Solution Model for Predicting Termary Thermo
dynamie Properties[J]. Calphad, 1987, 11(3) : 293 300.[28] Chou K C, Wei S K. A New Generation Solution Model for Pre-
dicting Themodynamic Properties of a Multieomponent System from Binaries [ J]. Metallurgical and Materials Transactions B, 1997, 28(3) : 439 445.
[ 29] Janz G J, Allen C B, Bansal N P, et al. Physical Properties Data
Compilations Relerant to Energy Storage. II. Molten Salts: Data on Single and Multi-Component Salt Systems[ R]. NY: Rens-selaer Polytechnie Inst, Cogswell Lab, 1979.
[30] Janz G J. Physical Properties Data Compilations Releeant to Energy
Storage[ M ]. Washington: US Dept of Commeree, National Bureau of Standards, 1981.
真空扩散焊设备与工艺技术
根据产品要求进行真空扩散焊工艺开发和设备设计制造,形成多项自主自主知识产权技术。
适
用于难焊材料的焊接,异质材料组配,双层或多层网/板的分层实体制造,封闭复杂型腔结构制造。该技术获发明专利3项。
性能指标
(1)最高焊接温度1450~2000℃;(2)均匀区:Φ300mm×300mm,或按照要求设计;(3)工作真空度:6.6×10->Pa;(4)焊接后变形量控制:0.2%~2%。
特点
(1)固相焊接,对母材热损伤小,为熔焊、难焊材料提供了有效的焊接方法;(2)变形量小、变形可控,近终成形,为金属分层实体的制造提供了可靠方法;(3)可与真空钎焊结合,实现复合工艺制造。
适用范围
(1)航空航天:钛合金层板结构件,铝合金泵叶轮,多层不锈钢复合滤网等;(2)工程物理:单晶硅同步辐射冷却器等;(3)卫星导航:铝铜滤波器、屏蔽器;(4)民用技术:发电厂不锈钢阀
+
笼,重离子加速器铜/钢冷却板,不锈钢网/板复合结构,不锈钢喷墨打印喷头等。
合作方式
技术开发联系电话
技术转让
技术咨询
029-86226599
技术服务
联系人
薛先生
+++++*++++******++*****4+*4+*845*+*8**$**4