您当前的位置:首页>论文资料>基于不平衡学习的分类器博弈模型及其在中国象棋中的应用

基于不平衡学习的分类器博弈模型及其在中国象棋中的应用

资料类别:论文资料

文档格式:PDF电子版

文件大小:851.25 KB

资料语言:中文

更新时间:2024-11-19 17:10:38



推荐标签:

内容简介

基于不平衡学习的分类器博弈模型及其在中国象棋中的应用 计算机研究与发展
Journal of Computer Research and Development
ISSN1000-1239/CN11-1777/TP
48(5): 841847, 2011
基于不平衡学习的分类器博奔模型及其在中国象棋中的应用苏攀王熙照李艳
(河北大学数学与计算机学院河北省机器学习与计算智能重点实验室河北保定071002)(supan1986@yahoo,com)
ModelingChessStrategybyClassifierBasedonImbalanceLearningand
ApplicationinComputerChineseChess SuPan,WangXizhao,and LiYan
(Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, College of Mathematics and Computer Science,Hebei University,Baoding,Hebei 071002)
Abstract Computer chess game (CCG) is an important topic in the field of artificial intelligence. This technique is widely used in some entertainment PC games and chess games on different platforms Most CCG systems are developed based on the combination of game tree searching and evaluation functions. When using game tree searching method, the level of the computer player depends on the searching depth. However, deep game tree searching is time-consuming when the games are applied on some mobile platforms such as mobile phone and PDA, In this paper, a novel method is proposed which models Chinese chess strategy by training a classifier. When playing chess games, the trained classifier is used to predict good successor positions for computer player. The training procedure is based on imbalance learning and it uses Chinese chess game records as the training sets. Specifically, the training sets extracted from game records are imbalanced; therefore, imbalance learning methods are employed to modify the original training sets. Compared with the classical CCG system, this new method is as fast as 1-level game tree search when playing games, and it contains an offline learning process, Experimental results demonstrate that the proposed method is able to model Chinese chess strategies and the imbalance learning plays an important role in the modeling process
Key wordsimbalance learning; computer game; computer Chinese chess; chess strategy modeling; artificial neuralnetworks
摘要计算机博弃是人工智能领中的热点研究课题,传统计算机博弃模型使用极大极小技索与评估函数相结合的方式,力高低依赖子技索的深度,在计算性能较低的平台上,捷索深度加深会延长反应时间,因此,提出了一种应用不平衡学习技术使用专家谱训练分类器的机器博奔解决方策,反应时间只相当于。层搜索,且更能体现学习的特性,使用3种经典的不平衡学习方法训练神经网络,并对结果进行了比较.验证了使用分类器模拟中国象棋策略的可能性,以及不平衡学习技术在该策略建模过程中起到的关键作用,
收稿日期:2010-0419;修固日期:2010-10-12
基金项目:国家自热科学基金项目(60903088);河北省自然科学基金项目(F2010000323,F2009000227,F2008000635);河北省应用基础研究
重点项目(08963522D)
万方数据 计算机研究与发展
Journal of Computer Research and Development
ISSN1000-1239/CN11-1777/TP
48(5): 841847, 2011
基于不平衡学习的分类器博奔模型及其在中国象棋中的应用苏攀王熙照李艳
(河北大学数学与计算机学院河北省机器学习与计算智能重点实验室河北保定071002)(supan1986@yahoo,com)
ModelingChessStrategybyClassifierBasedonImbalanceLearningand
ApplicationinComputerChineseChess SuPan,WangXizhao,and LiYan
(Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, College of Mathematics and Computer Science,Hebei University,Baoding,Hebei 071002)
Abstract Computer chess game (CCG) is an important topic in the field of artificial intelligence. This technique is widely used in some entertainment PC games and chess games on different platforms Most CCG systems are developed based on the combination of game tree searching and evaluation functions. When using game tree searching method, the level of the computer player depends on the searching depth. However, deep game tree searching is time-consuming when the games are applied on some mobile platforms such as mobile phone and PDA, In this paper, a novel method is proposed which models Chinese chess strategy by training a classifier. When playing chess games, the trained classifier is used to predict good successor positions for computer player. The training procedure is based on imbalance learning and it uses Chinese chess game records as the training sets. Specifically, the training sets extracted from game records are imbalanced; therefore, imbalance learning methods are employed to modify the original training sets. Compared with the classical CCG system, this new method is as fast as 1-level game tree search when playing games, and it contains an offline learning process, Experimental results demonstrate that the proposed method is able to model Chinese chess strategies and the imbalance learning plays an important role in the modeling process
Key wordsimbalance learning; computer game; computer Chinese chess; chess strategy modeling; artificial neuralnetworks
摘要计算机博弃是人工智能领中的热点研究课题,传统计算机博弃模型使用极大极小技索与评估函数相结合的方式,力高低依赖子技索的深度,在计算性能较低的平台上,捷索深度加深会延长反应时间,因此,提出了一种应用不平衡学习技术使用专家谱训练分类器的机器博奔解决方策,反应时间只相当于。层搜索,且更能体现学习的特性,使用3种经典的不平衡学习方法训练神经网络,并对结果进行了比较.验证了使用分类器模拟中国象棋策略的可能性,以及不平衡学习技术在该策略建模过程中起到的关键作用,
收稿日期:2010-0419;修固日期:2010-10-12
基金项目:国家自热科学基金项目(60903088);河北省自然科学基金项目(F2010000323,F2009000227,F2008000635);河北省应用基础研究
重点项目(08963522D)
万方数据
上一章:软件开发项目过程质量控制要点 下一章:软件质量保证过程研究

相关文章

前置粗糙分类器的基于关联规则的Logistic 回归在脑梗塞发病因素分析中的应用 基于流速调制的电子鼻及其在啤酒分类中的应用 基于最小二乘支持向量机算法的三维荧光光谱技术在中国白酒分类中的应用 有限元技术在基于能量平衡的机床动态设计中的应用 神经网络敏感性分析及其在遥感影像分类中的应用 基于云模型的推理规则在空气质量预报中的应用 基于BIM模型的深化设计在大型总承包工程中的应用 模型论及其在计算机科学中的应用 数学与应用数学基础课系列教材