您当前的位置:首页>论文资料>基于马尔科夫链和贝叶斯网络的钻井风险预测

基于马尔科夫链和贝叶斯网络的钻井风险预测

资料类别:论文资料

文档格式:PDF电子版

文件大小:1.29 MB

资料语言:中文

更新时间:2024-12-16 17:35:42



推荐标签:

内容简介

基于马尔科夫链和贝叶斯网络的钻井风险预测 第38卷第3期 2016年5月


采工

OIL DRILLING & PRODUCTION TECHNOLOGY
文章编号:10007393(2016)03029105
DOI: 10.13639/j.odpt.2016.03.003
Vol. 38 No. 3
May2016
基于马尔科夫链和贝叶斯网络的钻井风险预测
钟仪华刘雨鑫
林旭旭
西南石油大学理学院
引用格式:钟仪华,刘雨鑫,林旭旭,基子岛尔科夫链和贝叶斯网络的钻并风险预测J」,石油钻采工艺,2016,383): 291-295.
摘要:钻并作业是高风险高投资的过程,达个过程中存在许多可能乎致重大钻井事故的不确定因素,对此类不确定性因素进行预测进而达到预警或控制的目的,提前做好风险预防或降低风险损失具有较大的经济意义。通过研究钻并风险预测、岛尔科夫链和真叶斯网络方法,根据现场采用的指标体系,提出融含马尔科夫链和贝叶斯网络的钻井风险预测新方法。该方法可从织、横两方面预测钻并事故的风险、弥补单独用马尔科夫链处理上层指标数据欠缺的不定;并可为诊断、整测和控制风险提供理论依据。实例研究表明,该方法是正确和可行的,用马尔科夫链进行级向预测与实际的响合度为82%,而更叶斯网络仅为 46%,融合后的方法优于现有方法:
关键词:钻井风险;风险预测;马尔科夫链;贝叶斯网络
中图分类号:TE28
文献标识码:A
Drilling risk prediction based on Markov chain and Bayesian network
ZHONG Yihua, LIU Yuxin, LIN Xuxu
Schoof of Science, Sourhwesr Petroleum University, Chengdhr, Sicharan 610500, China
Citation: ZHONG Yihua, LIU Yuxin, LIN Xuxu. Drilling risk prediction based on Markov chain and Bayesian network [J ] . Oil Drilling & Production Technology, 2016, 38(3): 291-295.
Abstract: Drilling operation is a risky and costly process, during which many uncertainties may cause a serious accident. In order to prevent or mitigate the risks and thereby avoid economic loss, it is necessary to predict these uncertainties. In this paper, the existing drill-ing risk prediction methods (e.g. Markova chain and Bayesian network) were reviewed, and then a new drilling risk prediction method was proposed by integrating the Markova chain and Bayesian network based on the index system adopted on site. This new method can be used predict the risk of drilling accident vertically and horizontally, and also overcome the shortage which occurs when the upper indices are processed only by using Markova chain. Moreover, it provides the theoretical basis for the risk diagnosing, monitoring and controlling. The case study shows that this new method is correct and feasible. The goodness of fit between the vertical prediction and the actual data of the integrated method is higher than that of Markova chain (82%) and Bayesian network (46%)
Key words: drilling risk; risk prediction; Markov chain; Bayesian network 钻井风险预测可避免或减少钻并事故。近年
络、模糊综合评价、蝴蝶结与模型模拟等方法研究了
来,石油和数学领域的许多专家分别利用贝叶斯网
钻并风险间题,主要集中在对风险的定性和定量描
基金项目:西南石油大学创新团基全项目:“最优化理论与控制”(编号:2013XJZT004)。
第一作者:钟仅华(1965-),2011毕业于西南石油大学石油工程计算技术专业,现从事石油工程计算技术和数据挖超的研究及教学工作
教段,硕士生导师。通讯地址:(610500)四川省成都市新都区新都大道8号西南石油大学理学院。E-mail;zhongyh_65@126. com
通讯作者:刘雨鑫(1992-),2014年率业于西南石油大学敦学与点用数学专业,现从事数据挖提及应周统计研究。通讯疏证:(610500)四
川省成都市新都区新都大道8号西南石海大学明理楼A522宝。E-mail;18782026781@163.com
万方数据
上一章:致密油储层岩石孔喉比与渗透率、孔隙度的关系 下一章:气井携液用涡流工具结构参数优化

相关文章

基于贝叶斯网络的海上交通系统设备投资风险决策 基于贝叶斯网络节能住宅的投资决策 SN/T 4839-2017 进出口商品质量安全信息风险评估方法基于贝叶斯定理的移动加权平均模型 SN/T 4839-2017 进出口商品质量安全信息风险评估方法 基于贝叶斯定理的移动加权平均模型 基于神经网络和马尔柯夫链的网络流量预测方法 贝叶斯网络对于嵌入式系统相关课程学习的分析应用 基于贝叶斯决策的网格计算资源分配算法 基于因子分析和贝叶斯估计的机床热误差建模