您当前的位置:首页>论文资料>电化学/过硫酸盐耦合体系降解水中有机药物卡马西平

电化学/过硫酸盐耦合体系降解水中有机药物卡马西平

资料类别:论文资料

文档格式:PDF电子版

文件大小:1.49 MB

资料语言:中文

更新时间:2024-12-07 08:22:57



推荐标签:

内容简介

电化学/过硫酸盐耦合体系降解水中有机药物卡马西平 第38卷第6期 2016年12月
土木建筑与环境工程
Journal of Civil,Architectural &.Environmental Engineering
doi:10.11835/j.issn.1674-4764.2016.06.020
电化学/过硫酸盐耦合体系降解水中
有机药物卡马西平
赵纯1a.1b2,张现可la,孙志华?,安叶la,段博文1a,邓鹏la,刘芮1",郑怀礼1a.b
Vol. 38 No. 6 Dec.2016

(1.重庆大学a.三峡库区生态环境教育部重点实验室;b.低碳绿色建筑国际联合研究中心、
重庆400045;2.石河子大学水利建筑工程学院,新疆石河子832003)
摘要:采用电化学/过硫酸盐耦合体系(E-PS过程)降解水中的有机药物卡马西平(CBZ)。实验采用了分批模式进行,研究了温度、过硫酸钠浓度、初始pH值、电压等因素对E-PS过程降解CBZ 的影响。反应100min后,单独过硫酸钠、电解和E-PS过程对卡马西平的降解率分别为25.5%、 59.3%、78.1%,TOC去除率分别为8.25%、23.48%、26.68%。升高温度可以有效提高CBZ的降解率。反应100min后,在288K,CBZ降解率为60.2%;在298K,CBZ降解率达到78.1%;而在 308K,CBZ降解率为90.1%。CBZ的降解率随着过硫酸盐浓度的增加而提高。当过硫酸盐浓度为40g/L时,反应100min,CBZ降解率达94.7%。初始pH值对CBZ降解率的影响为pH3.0>
关键词:硫酸根自由基;卡马西平;电解;过硫酸盐
中图分类号:X131.2
文章编号:1674-4764(2016)06-0148-06
文献标志码:A
Degradationofcarbamazepinebycouplingelectrolysis
withpersulfateoxidationinaqueoussolution Zhao Chunla.1b-", Zhang Xiankela, Sun Zhihua", An Yela, Duan Bowen'a, Deng Peng'a, Liu Ruila, Zheng Huailila.lb
(la. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education; 1b. National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400045, P. R. China; 2. College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832003, Xinjiang, P. R. China)
Abstract:Oxidative degradation of CBZ in aqueous solution was carried out by coupling electrolysis with persulfate. Experiments were carried out under a batch-wise mode to evaluate the influence of various operation parameters on the electrolytic behavior, such as initial acidity of aqueous solution, temperature. voltage, persulfate anion concentration. After one hundred minutes reaction, the degradation rate of CBZ
收稿日期:2016-04-04
0008
(201406150031)
作者简介:赵纯(1982-),男,博士,副教授,主要从事水处理高级氧化理论与技术研究,(E-mail)pureson@cqu.edu.com Received:2016-04-04
Foundation item: National Natural Science Foundation of China (No. 51308563); Fundamental Research Funds for the
Central Universities (No.106112014CDJZR210004); Large Instruments Fund (No. 201406150031)
Author brief: Zhao Chun (1982-), PhD, associate professor, main research interests: advanced oxidation theory and 万方数据chnology ofwatertreatment,(E-mail)pureson@cqu.edu.com.
上一章:增量修改在PAAD中的应用 下一章:基于不同数据处理方法的击实特性求解及应用

相关文章

臭氧金属氧化物催化降解水中有机物的研究 粉煤灰负载二氧化钛光催化降解水中有机物 电感耦合等离子体发射光谱法测定磷矿浮选尾矿水中的磷酸根、硫酸根含量 DB35/T 2006-2021 水中硝酸盐氮同位素测定 化学转化法 YS∕T 514.9-2006 高钛渣、金红石化学分析方法过硫酸盐-亚砷酸盐容量法测定一氧化锰量 YS∕T 509.11-2006 锂辉石、锂云母精矿化学分析方法过硫酸盐氧化光度法测定-氧化锰量 水环境化学_第二松花江吉林段水中有机污染物研究 YS/T 509.10-2008 锂辉石、锂云母精矿化学分析方法一氧化锰量的测定过硫酸盐氧化分光光度法