您当前的位置:首页>数学书籍>抽象代数讲义(第3卷 英文版)2013年版

抽象代数讲义(第3卷 英文版)2013年版

资料类别:数学书籍

文档格式:PDF电子版

文件大小:63.06 MB

资料语言:中文

更新时间:2021-06-30 12:06:20



推荐标签: 讲义 抽象 代数 英文版 年版

内容简介

抽象代数讲义(第3卷 英文版)
出版时间:2013年版
内容简介
  The present Vrolume completes the series of texts on algebra which the author began more than ten years ago. The account of field theory and Galois theory which we girre here is based on the notions and results of general algebra which appear in our first volume and on the more elementary parts of the second volume, dealing with linear algebra.The level of the present work .is roughly the same as that of Volume II.
目录
INTRODUCTION
S ECTION
1. Extension of homomorphisms
2. Algebras
3. Tensor products of vector spaces
4. Tensor product of algebras
CHAPTER I: FINITE DIMENSIONAL EXTENSION FIELDS
1 Some vector spaces associated with mappings of fields
2. The Jacobson-Bourbaki correspondence
3. Dedekind independence theorem for isomorphisms of a field
4. Finite groups of automorphisms.
5. Splitting field of a polynomial
6. Multiple roots. Separable polynomials
7. The "fundamental theorem" of Galois theory
8. Normal extensions. Normal closures
9. Structure of algebraic extensions. Separability
10. Degrees of separability and inseparability. Structure of normal extensions
11. Primitive elements
12. Normalbases
13. Finitefields
14. Regular representation, trace and norm
15. Galois cohomology
16. Composites of fields
CHAPTER II: GALOIS THEORY OF EQUATIOIVS
1. The Galois group of an equation
2. Pureequations
3. Galois' criterion for solvability by radicals
4. The general equation of n-th degree
5. Equations with rational coefficients and symmetric group as Galoisgroup
CHAPTER Ⅲ: ABELIAN EXTENSlONS
1. Cyclotomic fields over the rationals
2. Characters of finite commutatiye groups
3. Kummer extensions
4. Witt rrectors
5. Abelian p-extensions
CHAPTER Ⅳ: STRUCTURE THEORY OF FIELDS
1 Algebraically closed fields
2. Infinite Galois theory
3. Transcendency basis
4. Luroth's theorem.
5. Linear disjointness and separating transcendency bases
6. Derivations
7. Derivations, separability and p-independence
8. Galois theory for purely inseparable extensions of exponert one
9. Higher derivations
10. Tensor products of fields
11. Free composites offields
CHAPTER V: VALUATION .THEORY
1. Realvaluations
2. Real valuations of the field of rational numbers
3. Real valuations of (x) which are trivial in
4. Completionofafield
5. Some properties of the field of p-adic numbers
6. Hensel'slemma
7. Construction of complete fields with given residue fields
8. Ordered groups and-valuations
9. Valuations, valuation rings, and places
10. Characterization of real non-archimedean valuations
11. Extension of homomorphisms and valuations
12. Application of the extension theorem: Hilbert Nullstellensatz
13. Application of the extension theorem: integral closure
……
CHAPTER VI: ARTIN-SCHREIER THEORY
Index
上一章:Ъ.П.吉米多维奇数学分析习题全解1 下一章:2014MBA、MPA、MPAcc联考数学历年真题名家详解

相关文章

抽象代数讲义(第1卷 英文版)2013年版 抽象代数讲义(第2卷 英文版)2013年版 费恩曼物理学讲义(第3卷·新千年版·中文版) [美]费恩曼 莱顿 桑兹 2013年版 布尔巴基数学基础(第2卷) 代数学(第1 3章.英文版) 1974年版 费恩曼物理学讲义(第2卷·新千年版·中文版) [美]费恩曼 莱顿 桑兹 2013年版 费恩曼物理学讲义(第1卷·新千年版·中文版) [美]费恩曼 莱顿 桑兹 2013年版 结合代数表示论基础(第3卷 英文版) 布尔巴基数学基础(第2卷) 代数学(第4 7章.英文版) 1990年版