您当前的位置:首页>数学书籍>微分方程数值方法引论

微分方程数值方法引论

资料类别:数学书籍

文档格式:PDF电子版

文件大小:11.04 MB

资料语言:中文

更新时间:2021-07-03 13:17:33



推荐标签: 方法 数值 微分方程 引论

内容简介

微分方程数值方法引论
作 者: (美)霍姆斯 编著
出版时间:2011
内容简介
  《微分方程数值方法引论》内容包括:初值问题、两点边界值问题、扩散问题、平流方程、椭圆型问题等。
目录
Preface
1 Initial Value Problems
 1.1 Introduction
  1.1.1 Examples of IVPs
 1.2 Methods Obtained from Numerical Differentiation .
  1.2.1 The Five Steps
  1.2.2 Additional Difference Methods
 1.3 Methods Obtained from Numerical Quadrature
 1.4 Runge--Kutta Methods
 1.5 Extensions and Ghost Points
 1.6 Conservative Methods
  1.6.1 Velocity Verlet
  1.6.2 Symplectic Methods
 1.7 Next Steps
 Exercises
2 Two-Point Boundary Value Problems
 2.1 Introduction
  2.1.1 Birds on a Wire
  2.1.2 Chemical Kinetics
 2.2 Derivative Approximation Methods
  2.2.1 Matrix Problem
  2.2.2 Tridiagonal Matrices
  2.2.3 Matrix Problem Revisited
  2.2.4 Error Analysis
  2.2.5 Extensions
 2.3 Residual Methods
  2.3.1 Basis Functions
  2.3.2 Residual
 2.4 Shooting Methods
 2.5 Next Steps
 Exercises
3 Diffusion Problems
 3.1 Introduction
  3.1.1 Heat Equation
 3.2 Derivative Approximation Methods
  3.2.1 Implicit Method
  3.2.2 Theta Method
 3.3 Methods Obtained from Numerical Quadrature
  3.3.1 Crank-Nicolson Method
  3.3.2 L-Stability
 3.4 Methods of Lines
 3.5 Collocation
 3.6 Next Steps
 Exercises
4 Advection Equation
 4.1 Introduction
  4.1.1 Method of Characteristics
  4.1.2 Solution Properties
  4.1.3 Boundary Conditions
 4.2 First-Order Methods
  4.2.1 Upwind Scheme
  4.2.2 Downwind Scheme
  4.2.3 blumericul Domu'm of Dependence
  4.2.4 Stability
 4.3 Improvements
  4.3.1 Lax-Wendroff Method
  4.3.2 Monotone Methods
  4.3.3 Upwind Revisited
 4.4 Implicit Methods
 Exercises
5 Numerical Wave Propagation
 5.1 Introduction
  5.1.1 Solution Methods
  5.1.2 Plane Wave Solutions
 5.2 Explicit Method
  5.2.1 Diagnostics
  5.2.2 Numerical Experiments
 5.3 Numerical Plane Waves
  5.3.1 Numerical Group Velocity
 5.4 Next Steps
 Exercises
6 Elliptic Problems
 6.1 Introduction
  6.1.1 Solutions
  6.1.2 Properties of the Solution
 6.2 Finite Difference Approximation
  6.2.1 Building the Matrix
  6.2.2 Positive Definite Matrices
 6.3 Descent Methods
  6.3.1 Steepest Descent Method
  6.3.2 Conjugate Gradient Method
 6.4 Numerical Solution of Laplace's Equation
 6.5 Preconditioned Conjugate Gradient Method
 6.6 Next Steps
 Exercises
A Appendix
 A.1 Order Symbols
 A.2 Taylor's Theorem
 A.3 Round-Off Error
  A.3.1 Fhnction Evaluation
  A.3.2 Numerical Differentiation
 A.4 Floating-Point Numbers
References
Index
上一章:线性代数 第二版 [任功全,封建湖,薛宏智 编著] 2012年版 下一章:李群机器学习

相关文章

微分方程数值解:有限差分理论方法与数值计算 偏微分方程外问题:理论和数值方法 偏微分方程逆问题的数值方法及其应用 微分方程定性方法和数值模拟(英文版) 常微分方程定性理论引论 时滞微分方程:泛函微分方程引论 现代数学基础丛书 发展方程数值计算方法 黄明游 2004年版 偏微分方程引论(第二版 英文影印版)