您当前的位置:首页>建筑工程>描述岩土工程模型不确定性特征的贝叶斯方法(英文版)

描述岩土工程模型不确定性特征的贝叶斯方法(英文版)

资料类别:建筑工程

文档格式:PDF电子版

文件大小:66.65 MB

资料语言:中文

更新时间:2021-03-07 07:53:08



推荐标签: 岩土工程 模型 方法 不确定性 贝叶斯 英文版 特征 描述 贝叶 描述

内容简介

描述岩土工程模型不确定性特征的贝叶斯方法(英文版)
出版时间:2011年版
内容简介
  As any model is only an abstraction of the real world, model uncertainty always exists. Ingeotechnical engineering, the model uncertainty could be large. Lack of knowledge about modeluncertainty may lead to unrealistic predictions. When back analysis from observed performances,model uncertainty is often mixed with parameter uncertainty and observational uncertainty. Hence itis generally difficult to isolate and characterize model uncertainty. This book introduces the state-of-the-art theories and methodologies for geotechnical model uncertainty characterization based on theBayesian theory, including both rigorous solution and approximate but practical solutions, where theeffects of parameter uncertainty and observational uncertainty on model uncertainty characterizationare appropriately addressed. The theories and methodologies are illustrated in detail with variousgeotechnical problems. The book will be of general interest to readers in the profession andparticularly useful for those specializing in geotechnical inverse analysis and geotechnical reliability.
目录
Preface
Chapter 1 Introduction
1.1 Background
1.2 Objective and Scope
1.3 Organization of the Book
Chapter 2 Literature Review
2.1 Within-System Characterization
2.1.1 Least Square Method
2.1.2 Maximum Likelihood Method
2.1.3 Bayesian Method
2.1.4 Extended Bayesian Method
2.1.5 Model Comparison and Multi-model Inference
2.2 Cross System Characterization
2.3 Bayesian Method and Computational Techniques
2.3.1 Maximum Posterior Density Method
2.3.2 First order Second moment Bayesian Method (FSBM)
2.3.3 Laplace Method
2.3.4 System Identification Method
2.3.5 Sampling Based Methods
2.4 Summary
Chapter 3 Bayesian Framework for Characterizing Model Uncertainty
3.1 Parameter, Model, and Observation Uncertainties
3.2 Bayesian Estimation of Model Uncertainty
3.2.1 Extension to Multiplicative Model Correction Factor
3.2.2 Extension to Censored Observed Data
3.2.3 Extension to Model Correction Functions
3.3 Characteristics of Cross System Model Uncertainty Characterization
3.3.1 Role of Prior Information
3.3.2 Interpretation of Determined Model Uncertainty
3.4 Assignment of Prior Uncertainties
3.4.1 General Guidelines for Determining f(xi)
3.4.2 Prior Distribution for Model Uncertainty Parameters
3.5 Decision Involved in Model Uncertainty Characterization
3.5.1 Selection of Model Correction Factors
3.5.2 Use of Model Correction Function
3.6 Prediction of System Responses
3.7 Possible Solutions to the Bayesian Framework
3.8 Summary
Chapter 4 Simplified Bayesian Framework for Characterizing Model Uncertainty
4.1 Introduction
4.2 Approximate Formulation for Characterizing Model Uncertainty
4.3 Discussion of Prior Distributions on Model Uncertainty Parameters
4.4 Characterizing Model Uncertainty based on the Approximate Formulation
4.4.1 Maximum Posterior Density Method
4.4.2 Grid Calculation Method
4.4.3 MCMC Simulation
4.5 Comparison of Model Uncertainty Factors
4.5.1 Spreadsheet Method
4.5.2 Grid Calculation Method
4.6 Approximate Prediction of System Response
4.7 Extension to Model Correction Functions
4.8 An Illustration Example
4.8.1 Background
4.8.2 Prior Knowledge in Model Uncertainty Parameters
4.8.3 Test Uncertainty
4.8.4 Calculation of 霨(x) and 驡(x)
4.8.5 Spreadsheet Implementation of the Maximum Posterior Method
4.8.6 Comparison of Methods for Model Uncertainty Characterization
4.9 Summary
Chapter 5 Efficient Markov Chain for Identifying Geoteehnieal Model Uncertainty
5.1 Introduction
5.2 Study of Efficient Markov Chain for Characterizing Model Uncertainty
5.2.1 Markov Chains under Investigation
5.2.2 Comparison of Markov Chains
5.3 Hybrid Markov Chain for Model Uncertainty Characterization in the Original Bayesian Framework
5.3.1 Structure of the Hybrid Markov Chain
5.3.2 Determination of the Jumping Functions
5.3.3 Check of Convergence
5.4 Application to the Slope Stability Model Example
5.4.1 Performance of the Markov Chain
5.4.2 Check of Convergence
5.4.3 Posterior Distributions
5.4.4 Accuracy of Approximate Methods
5.5 Extension to Model Correction Function Calibration
5.6 Summary
Chapter 6 Probabilistic Back-Analysis of Slope Failure
6.1 Introduction
6.2 Further Study on Model Uncertainty of Limit Equilibrium Methods
6.2.1 Effect of Test Uncertainty
6.2.2 Effect of Quality of Test Data
6.2.3 Effect of Amount of Test Data
6.3 Back Analysis of Slope Failure with Unknown Model Uncertainty
6.3.1 Bayesian Formulation
6.3.2 MCMC Simulation
6.3.3 Response Surface Approximation
6.3.4 Illustrative Example
6.4 Back Analysis of Slope Failure with Known Model Uncertainty
6.4.1 Theory of Back Analysis with Known Model Uncertainty
6.4.2 Step-by-step Implementation
6.4.3 Reanalysis of Shek Kip Mei Landslide
6.5 Summary
Chapter 7 Reliability Based Design of Pile Foundation
7.1 Introduction
7.2 Problem Description
7.3 Model Uncertainty Characterization
7.3.1 Model Uncertainty Characterization Using Approximate Methods
7.3.2 Model Uncertainty Characterization in the Original Bayesian Framework
7.3.3 Comparison of Results
7.3.4 Effect of Data Censoring on Model Uncertainty Characterization
7.3.5 Role of Model Uncertainty in Pile Capacity Prediction
7.4 Comparison of Probabilistic Models for Model Uncertainty Characterization
7.4.1 Use of Additive Model Correction Factor
7.4.2 Use of Model Correction Functions
7.5 Reliability Based Design of Pile Foundations
7.5.1 Design Point Method
7.5.2 Application to Pile Capacity Model
7.5.3 Adjustment in Consideration of Structural Codes
7.5.4 Regression Analyses of Partial Factors
7.6 Reliability Based Design with Effective Stress Approach
7.7 Comparison of the SPT Method and Effective Stress Method
7.8 Summary
Chapter 8 Characterizing the Model Uncertainty of a Liquefaction Model
8.1 Introduction
8.2 Problem Description
8.2.1 Liquefaction Model under Investigation
8.2.2 Calibration Database
8.2.3 Parameter Uncertainty
8.3 Determination of Model Uncertainty
8.3.1 Bayesian Formulation
8.3.2 Choice-based Sampling Bias
8.3.3 Prior Probabilistic Analysis of Liquefaction Data
8.3.4 Calibration Results
8.3.5 Role of Model Uncertainty in Liquefaction Potential Evaluation
8.3.6 Determination of Target Factor of Safety
8.4 Summary
Appendix A
Appendix B
References
上一章:岩巷工程施工:支护工程 下一章:2011年版注册岩土工程师执业资格考试基础考试复习教程(最新版 第五版 上册)

相关文章

一种基于朴素贝叶斯分类模型的高光谱矿物精确识别方法 结构方程模型:贝叶斯方法 SN/T 4839-2017 进出口商品质量安全信息风险评估方法基于贝叶斯定理的移动加权平均模型 SN/T 4839-2017 进出口商品质量安全信息风险评估方法 基于贝叶斯定理的移动加权平均模型 贝叶斯非参数模型框架构建简介 基于贝叶斯群判断理论的数控机床装配可靠性保障方法研究 基于贝叶斯网络节能住宅的投资决策 基于贝叶斯决策的网格计算资源分配算法