
第29卷第9期 2016年9月
传感技术学报
CHINESE JOURNAL OF SENSORS AND ACTUATOR
Vol. 29No.9 Sept.2016
GasSensorFaultDiagnosisBasedonNeighborhoodRough
SetCombinedwithSupportVectorMachine
andExtremeLearningMachine
SHAN Yafeng,TANG YueREN Ren,XIE Hong
(College of Electrical and Gontrol Engineering Liaoning Technical Uniersity, Haludao Liaoning 125105, China)
Abstract :In order to solve the problem that the gas sensor diagnosis speed is slow and the diagnosis accuracy is not high, this paper takes the common type gas sensor fault such as impact, drift, bias and periodic fault as research ob-ject and proposes a pattern classification and identification of the fault diagnosis of gas sensor method based on neighborhood rough set (NRS) combined with support vector machine and extreme learning machine (SVM-ELM). First of all, normalize the feature attribute of the gas sensor,the reduction set is formed via reducing the attribute di-mension with NRS information reduction theory , including key attributes of the gas sensor. Train SVM-ELM taking the reduction set for input data and recognize the fault patterns using test samples. Finally , through experiment con-trast analysis , this method has the features of fast training speed, high accuracy of classification , and the identifica-tion correct rate is more than 95%. It can significantly improve the effectiveness and accuracy of the fault diagnosis. Key words: gas sensor; neighborhood rough set; Support Vector Machine and Extreme Learning Machine (SVM ELM) ; fault diagnosis
EEACC:7230
doi:10.3969/j.issn.10041699.2016.09.018
基于邻域粗糙集与支持向量极端学习机的
瓦斯传感器故障诊断单亚峰汤月,任仁,谢鸿
(辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105)
摘要:针对于瓦斯传感器故障诊断速度慢、诊断精度不高的间题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障作为研究对象,提出一种基于邻域粗糙集(NRS)和支持向量极端学习机(SVM-ELM)的故障诊断方法。首先对瓦斯传感器
将约简集作为SVM-ELM的输人进行训练,利用训练好的SVM-ELM对测试样本进行模式识别。最后通过实验对比验证该方
法具有训练速度快、分类精度高的特点,辨识正确率在95%以上,能够显著提高故障诊断的速度和准确性。关键词:瓦斯传感器;邻域粗糙集(NRS);支持向量极端学习机(SVM-ELM);故障诊断
中图分类号:TP212;TP181
文献标识码:A
瓦斯传感器作为煤矿安全监测系统中的关键部件,它肩负着检测矿井瓦斯浓度的重任,它输出的信号正确与否直接关系到整个煤矿瓦斯安全监测系统的安全水平的高低和性能好坏,然而煤矿井下高温、高压等恶劣的环境常常导致瓦斯传感器输出失真,灵敏度下降,准确性、可靠性降低,从而导致误报的情况。作为煤矿安全检测系统中重要部件,瓦斯
文章编号:1004-1699(2016)09-1400-05
传感器发生故障后及时准确地对其做出诊断和修复,可以有效地保护人们生命财产的安全,因此,对瓦斯传感器进行故障检测与诊断的研究是具有重要意义的。近年来,众多学者在故障诊断领域做了大量研究,并取得了一定的研究成果,采用的算法无非也是神经网络、支持向量机等,但经实践证明,这些方法存在一定的缺陷,文献[3]将神经网络应用于变压器的
项目来源:国家自然科学基金项目(51274118);辽宁省科技攻关基金项目(2011229011);辽宁省教育厅基金项目(L2012119)
收稿日期:2016-03-14
修改日期:2016-04-16