您当前的位置:首页>论文资料>基于传感器阵列多特征优化融合的茶叶品质检测研究

基于传感器阵列多特征优化融合的茶叶品质检测研究

资料类别:论文资料

文档格式:PDF电子版

文件大小:1.33 MB

资料语言:中文

更新时间:2024-12-03 15:34:49



推荐标签:

内容简介

基于传感器阵列多特征优化融合的茶叶品质检测研究 第31卷第3期 2018年3月
传感技术学报
CHINESE JOURNAL OF SENSORS AND ACTUATORS
Detection Method for Tea Quality Using Sensor Array CoupledwithMulti-FeatureOptimizationFusion
Vol. 31 No. 3 Mar.2018
ZHANGHongmei,ZoUGuangyu,WANGMiaosen,XIAoYanzhong,
TIANHui,WANGWanzhang
( College of Mechanical and Electnical Engineering , fenan Agricaultural /ninersity,Zhengahour 450002, Chine)
Abstract : In order to improve correct rate of discrimination result of different grades of tea using the electronic nose(E-nose), the overall average value, rising slope average value and relative steady-state average value were extracted from the sensor array as the feature values to optimize and fusion the sensor array of E-nose. The original feature values were normalized, the dimensional and magnitudes of feature values were unified. The overlap factor were removed through the factor loading analysis ,the multi feature vector matrix was optimized. Reducing the quality of tea in intra group spacing,increasing the quality of the tea in spacing between groups by one-way analysis of vari-ance. Through the multi-feature optimization fusion of sensor array ,E-nose can perform better in the detection of tea quality and reduce the inter group spacing of different grades of tea. The results of Linear Discriminant Analysis( LDA) is better than Principal Component Analysis ( PCA) , and three different grades of tea can be distinguished very clearly. The research provides an efficient method for E-nose's application in various fields. The results shows that the response signal of E-nose to tea can be more effectively represented using multi-feature optimization fusion, and the discrimination result can be improved.
Key words : electronic nose; load factor; single factor analysis of variance ; Principal Component Analysis ; Linear Discriminant Analysis
EEACC:7230
doi:10.3969/j.issn.10041699.2018.03.027
基于传感器阵列多特征优化融合的茶叶
品质检测研究
张红梅,邹光宇,王森森,肖焱中,田辉,王万章*
(河南农业大学机电工程学院,郑州450002)
摘要:为提高电子鼻对不同品质茶叶的识别能力,分别提取电子鼻传感器信号的总体平均值、上升阶段斜率平均值和相对稳态平均值作为特征值,对电子鼻传感器阵列进行多特征数据融合优化。首先对原始数据进行归一化处理,统一值的量纲和数量级;通过因子载荷分析,去除各个象限内主成分投影较小和投影重叠的因子,对多特征向量矩阵进行优化;最后采用单因素方差分析,缩小不同品质茶叶组内间距增大组间间距,更利于实现茶叶品质的区分。结果显示,主成分分析(PCA)可有效区分3种不同等级茶叶,因子载荷优化使各品质茶叶组内间距减小,单因素方差优化使一级与二级茶叶区分效果更明显;线性判别分析(LDA)效果要优于PCA分析3个不同等级的茶叶可得到极为明显的区分。研究结果表明,用多特征优化融合可有
效提取电子鼻对茶叶的响应信息,有利于对不同品质茶叶进行识别。关键词:电子募:载荷因子;单因索方差分析;PCA分析;LDA分析
中图分类号:TP212.9
文献标识码:A
文章编号:1004-1699(2018)030491-06
项目来源:国家自然科学基金项目(31501213);河南省现代农业产业技术体系建设专项资金项目(S2017-02-G07);河南省高
等学校青年骨干教师计划项目(2015GGJS-077)
收稿日期:2017-08-11
修改日期:2017-11-02
上一章:基于傅里叶变换红外光谱的灭活酿酒酵母菌对展青霉素的吸附机理分析 下一章:中高端苏酒的紫外荧光特性对比研究

相关文章

一种基于多特征融合的新型光谱相似性测度 基于气体传感器阵列和非线性信号分析技术的﹢龙井茶品质检测方法研究 基于多特征波长光谱分析的天然气泄漏遥测系统 基于波谱技术的茶树生长与茶叶品质信息快速检测研究进展 基于线性分割的动态称重传感器阵列优化方法 双波段光谱融合的猪肉多品质参数同时检测方法研究 基于十字形阵列传感器的局放超声定位实验研究 基于重氮功能化直立碳纳米管阵列的核酸适配体传感器的制备及其应用于凝血酶的检测