
20
中国材料进展
[3] Bolotin K I, Sikes K J, Hone J, et α.
Temperature-Dependent
Transport in Suspended Graphene [ J]. 101(9) : 4 7.
[4] Du X, Skachko 1, Barker A, et al.
port in Suspended 3(8) ; 491 495.
Graphene [J].
Phys Res Lett. 2008,
Approaching Ballistie Trans-
Nat
Nanotechaof,
[5] Schedin F, Geim A K, Moroeov S V, et al.
2008,
Detection of Indi-
vidual Gas Molecules Adsorbed on Graphene [ J].
Nat Mater,
2007, 6(9) : 652 625.
[6] Blake P, Brimicombe P D, Nair R R, et al.
Graphene-Based
Liquid Crystal Device [J]. Nano Lett, 20088 (6) : 1 704 1208.
Transparent, Conduetive Gra-
Wang X, Zhi L J, Mullen K.[7]
phene Electrodes for Dye-Sensitized Solar Cells[ J]. Neno Lett, 2008, 8(1) ; 323 327.
[8] Nair R R, Blake P, Grigorenko A N, et al.
Fine Structure Con-
stant Defines Visual Trnsparency of Gnaphene [ J]. Science, 2008, 320(5881) ; 1 308 1 313.
Processable Aqueous Disper
[9] Li D, Muller M B, Gilje S, ef al.
sions of Graphene Nanosheets [ J].Nat Nanotechnol, 2008, 3(2) : 101 105.
[10] Eda G, Fanchini G, Chhowalla M. Large-Area Ultrathin Films of
Reduced Graphene Oxide as a Transparent and Mlexible Electronic Material[J]. Aat Nanotechnol, 2008, 3(5) : 270 274.
[11] Gilje S, Han S, Wang M, et al.A Chemical Route to Gra-
phene for Device Applications [ J]. Nano Iet 2007, 7 ( 11) : 3 394 3 398.
[12] Lee C, Wei X D, Kysar J W, et al.
Measurement of the Elas-
tic Properties and Intrinsic Strength of Monolayer Graphene[ J]. Science, 2008 ; 321(5 887) : 385 388.
[13] Gomez-Navamo C, Burghard M, Kem K. Elastic Properties of
Chemically Derived Single Graphene Sheets [ J]. Nano Lelt, 2008, 8(7) : 2 045 2 048
[14] Fan Y C,
Wang L J, Li J L et al.
Prepanation and Electrical
Properties
of Graphene
Nanosheet/al, Os
Carbon, 48(6) ; 1 743 1 749
营·
000-00
40-41- -
Composites [J]]
第30卷
[15] Zhang Y B, Small J P, Pontius W V, et al.Fabrication and
Electric-Field-Dependent Transport Measurements of Mesoscopic Craphite Devices[J]. Appl Phys Lett, 2005, 86(7) : 3 5. Femandezmoran H. Single-Crystals of Graphite and of Mica as
[16]
Specimen Supports for Electron Microscopy [ J]. J Appl Phys, 1960; 31(10) ; 1 840 1 843
[17] Ebbesen T W, Hiura H.
Graphene in 3-Dimensions -Ttowards
Graphite 0rigami[J]- Adt Mater, 1995; 7(6) : 582 586.[18] Lu X K, Huang H, Nemchuk N, et al. Patteming of Highly
Oriented Pyrolytic Graphite by Oxygen Plasma Etching[J]. App] Phys Lett, 1999; 75(2) : 193 195
Two-Dimensional
[19] Novoselov K S, Jiang D, Schedin F, et al.
Proe Natt Aced Sei US4,2005,102
Atomie Crystals [ J].(30) : 10 451 10 453.
[20] Novoselov K S, Geim A K, Morozov S V, et al.
Electrie Field
Effect in Atomically Thin Carbon Films [ J]. Science, 2004, 306(5 696) : 666 669.
Montone A, Jovie N, et al. Low Energy Pure
[21] Antisari M V,
Shear Milling: A Method for the Preparation of Graphite Nano-
Shees[J]. Scr Mater, 2006, 55(11) : 1 047 1 050.[22] Knieke C, Benger A,
Scalable Production of
Voigt M, et al.
Graphene Sheets by Mechanical Delamination[ J]. Carbon, 48(11) : 3 196 3 204.
[23] Shen T D. Ge W Q. Wang K Y, et al. Structural Disorder and
Phase Transformation in Graphite Produced by Ball Milling[ J]. Nanostruct Mater, 1996, 7(4) : 393 399.
[24] Zhao W F, Fang M, Wu F R, et al.Preparation of Graphene
by Exfoliation of Graphite Using Wet Ball Milling[ J]. J Mater Chem, 20(28) ; 5 817 5 819.
[25] He T, Li J L, Wang L J, et al.
Preparation and Consolidation
of Alumina/Graphene Composite Powders [ J]. Maler Trans, 2009, 50(4) : 749 751.
[26] He Ting(贺
挺). Preparation and Properties of Alumina/Grg-
pheneComposite(氧化铝/纳米石墨层复合材料的制备和性能研究 [ D]. Beijing: Graduate School of Chinese Academy of Seiences, 2007.
格管营鲁营
警
催化氧化新材料
4
空心钛硅分子筛获2010年度
国家技术发明奖二等奖
“催化氧化新材料一一空心钛硅分子筛"项目经过近20年研究,取得了4方面的创新:①空心钛硅分子筛。发明重排技术,首创了世界上独特的空心钛硅分子筛HTS;②分子筛原粉催化剂制备。开发原位粘结、细颗粒去除和表面改性3项技术。首创无需成型可直接用于催化氧化反应的纳米/亚微米多空心钛硅分子筛原粉催化剂,实现了跨越式技术进步;③水解成核新工艺。开发了硅钛酯匹配水解和脱醇成核2项技术,解决了工业生产中硅酯和钛酯匹配水解、晶核控制以及成胶过程强放热等工业放大难题,为重排工艺提供质量稳定的钛硅分子筛中间体; ④低排放低能耗制造技术。首次移植膜过滤和微波干燥技术用于分子筛生产,解决了纳米/亚微米分子筛收率低易污染难干燥等工业难题。该产品和技术具有自由运作权,突破了国外知识产权壁垒,标志着我国拥有空心钛硅分子
筛及催化剂全套生产技术,并于2003年实现空心钛硅分子筛工业化,建成50吨/年生产装置。
(摘自科技部网站)