
第29卷第6期 2017年12月
浙江水利水电学院学报
J. Zhejiang Univ of Wat. Res & Electric Pow.
D0I: 10. 3969/j. issn. 2095-7092. 2017. 06. 003
瀑布沟水电站进水口应力与变形分析
李健,王辉义
(国家能源局大坝安全监察中心,浙江杭州311122)
Vol.29No.6 Dec.2017
摘要:采用有限元方法,对库塔式进水口进行三维线弹性计算取得应力与变形分布规律,然后利用子模型技术,伤分布规律及钢筋应力.结果表明,该岸塔式进水口整体变形很小,应力状态以受压为主,拉应力区主要集中在孔
口项、底板表层,且蓄水后应力状态得到改善,孔口周边混凝土损伤塑性区域很小,进水口整体安全关键词:电站进水口;应力;变形;子模型;损伤塑性模型
中图分类号:TV731
文献标志码:A
文章编号:1008536X(2017)06-0011-04
AnalysisofStress-deformationforInletTowerofPbugouHydropowerStation
LI Jian,WANG Hui-yi
( Large Dam Safety Supervision Center , National Energy Administration , Hangzhou 311122 , China)
Abstract : By the finite element method , the three-dimensional linear elastic calculation of stress and deformation for inle tower is obtained. With submodel technique , based on concrete damage plasticity model and the model of embedded steel bar, the three-dimensional nonlinear analysis on stress -strain for the orifice concrete of inlet tower is done to investigate the distribution of damage concrete and steel bar stress . Results show that the deformation of inlet tower is small , stress is given priority to with compression , tensile stress area is mainly concentrated in the orifice top and botom surface , and the stress condition is improved after water storage , concrete damage plastic surrounding the orifice area is small . The inlet tower is safe.
Key words ;inlet tower ; stress ; deformation; submodel ; damage plasticity model
岸塔式进水口是引水发电系统的咽喉,也是确保其后引水隧洞和发电厂房安全的重要屏障(1-3) 随着西南水电资源大规模开发,高坝大库越来越多,岸塔式进水口的高度也高达百米.对于百米级的高耸塔体结构,考虑其内布置有事故闸门、工作门及其后团设施,孔洞众多且交错相通,结构及受力均较复杂,若再采用简单的杆件体系或平面有限元法进行应力变形分析,可能造成无法得到结构关键部位的应力分布而使计算结果显得过于粗略难以完全满足工程设计需要.本文依托瀑布沟水电站96.0m高的岸塔式进水口结构,基于Abaqus平
收稿日期:2017-06-19
作者简介:李健(1979-),男,湖北随州人,颈士,高级工程师,从事大坝设计与安全管理工作。
万方数据
台,在整体三维线弹性有限元分析的基础上,采用子模型技术[4],考虑混凝土损伤塑性及与钢筋联合受力[3-7],对孔口局部主要拉应力区域进行局部三维非线性应力应变分析,以更深入了解孔口周边混凝土的应力状态,为结构设计和配筋计算提供依据与参考。
计算模型 1
1.1结构布置
瀑布沟水电站水库正常蓄水位850.00m,岸塔式进水口群采用"一二”字布置于左岸,各进水口自成独立单元结构,均由拦污栅段和进水段组成.进水口建基于花岗岩与玄武岩地基,建基面高程 765.00m,最大塔高96.0m;进水口单塔横流道向