
第52卷第8期 2016年4月
机械工程学报
JOURNALOFMECHANICALENGINEERING
DOI:10.3901/JME.2016.08.036
Vol.52
No.8
Apr.
2016
复合材料储能飞轮挠性结构振动的磁轴承控制
白金刚:赵雷,张剑2戴兴建2
(1.清华大学核能与新能源技术研究院北京100084
2.清华大学工程物理系北京100084)
摘要:储能密度是储能飞轮的重要指标之一,选用碳纤维、玻璃纤维复合材料的储能飞轮可以有效提高储能密度,同时,选用磁悬浮支承则可以适应真空环境及减少损耗。但是,由此也增加了结构的复杂性,例如,连结飞轮转子中金属部件与复合材料之间的挠性薄壳轮毂具有不同于常规刚体飞轮的动力学模型特性。针对薄壳结构的模态振动特征与陀螺效应控制之间的矛盾,描述一种具有挑性结构储能飞轮的磁轴承控制方法。在模态分析的基础上,利用多通道添加相位整形的控制方法有效抑制了系统中的挑性结构的模态振动。试验结果表明,使用所设计的控制器,转子可平稳通过中心频率为340Hz的轮毅一一心轴挠性模态振动区域,运行转速475Hz(28500r/min),轮缘最大线速度达到450m/s,并成功实现飞轮的充放电过程。
关键词:复合材料储能飞轮:磁轴承:陀螺效应:挑性模态中图分类号:TH133
VibrationControlbyAMBsforCompositeMaterialEnergyStorage
FlywheelwithFlexibleStructure
BAI Jingang' ZHAO Lei' ZHANG Kai? DAI Xingjian
(1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084:
2. Department of Engineering Physics, Tsinghua University, Beijing 100084)
Abstract: Density of energy storage is one of the most important parameters of a energy storage flywheel. By using composite material of fiberglass and carbon fiber can achieve more higher density of energy storage, and the selection of AMBs can made the loss as lower as possible and adapt to vacuum environment also. But due to these kinds of selection, the structure become more complex, for instant, the hub of flexible shell between the steel and composite material in the flywheel rotor has a different dynamics to conventional flywheel of rigid body. Therefore, for settlement the conflict between the controlling of gyroscopic effect and thc vibration of flexible structure, a AMBs control method which is described to deal with the flywheel with flexible structure. Based on analyzing the flexible modal of the hub-axis structure carefully, multi-channel phase shaper within the controller to restrain the vibration of the wheel hub flexible mode. The experimental results show that the rotor can pass the vibration region of the flexible aads e pe (/ s ) o d oo [o oos noqe s ana a apo
of the rotor edge reaches 450 m/s. After that, the flywheel is charged and discharged with electricity successfully asaoea
电状态将机械能转换为电能对外输出。相对于其他
前言 0
飞轮储能是一种有着广泛应用前景的储能方式[1],其工作原理是电机驱动飞轮转子高速旋转将电能转换为机械能并在高真空机低支承损耗环境中存储,当外部需要电能时飞轮降速,电机工作于发
20150922收到初稿,20160229收到修改霜
储能方式,飞轮储能具有可大功率、高密度充放电以及无充放电次数限制等优点。为保证所存储能量损耗小且能保持足够长时间,一般需要在真空中运行,并要求其支承损耗在真空环境中极小化。磁悬浮轴承是一种符合储能飞轮应用要求的理想支承,随着技术的逐步成熟,已经成为储能飞轮支承发展的主流方向(3-5)。